Our standard summer workshops consist of three sections.

For all three workshops, introductory lecture material will cover normal cellular and molecular biology, including cell division, cell death, gene structure/regulation, protein structure/function, post-translational modifications and signal transduction. Once this foundation is established, the content of the three courses will diverge to cover the individual topics.

  1. In the Molecular Biology of Cancer workshop, lessons on normal molecular and cellular biology will provide a foundation for discussion of how these normal cellular processes are distorted or disrupted to trigger the development of cancer and how modern medicine is using this information to generate a new generation of drugs. Examples of topics that are covered include gene mutation/DNA repair, cell death (apoptosis), angiogenesis, metastasis, cancer stem cells, and tumor immunology.
  2. In the Molecular Neuroscience workshop, lessons on normal molecular biology will be used as a foundation to understand normal neurobiology on a molecular level, including topics such as action potentials, memory, emotion, learning and visual perception. There will be a heavy emphasis on neurological disorders such as Alzheimer’s, schizophrenia, Multiple Sclerosis, depression and addiction, including strategies for pharmaceutical intervention and the future of drug development.
  3. The Molecular Immunology course will examine the function and regulation of the immune system at the molecular level. This includes lessons on the normal role of our immune system in combatting viral and bacterial infections such as Zika and tuberculosis, immunodeficiency disorders such as HIV, and autoimmune diseases such as lupus and type 1 diabetes that arise due to a hyperactive/poorly controlled immune system. Additional topics to be covered include the human microbiome, the role of inflammation in tumor development and type 2 diabetes, vaccine/antibiotic development and cancer immunotherapy.

To conclude the class, students will use their new knowledge and conduct independent computer research on a gene of their choosing. In general, students will investigate the normal function of their gene and the role of their gene in the development of disease, and then investigate and/or hypothesize how this knowledge could be used by researchers to rationally design the next generation of therapies. Instructors guide the students through this process, but in order to foster a spirit of discovery the students are purposefully given considerable leeway to choose their own direction and area of emphasis.

Throughout the class there will be a heavy emphasis on how to identify, analyze and solve problems using the scientific method, and learning how these skills translate into diverse professions within the field of biomedicine.

*Don’t be intimidated by the unfamiliar terminology…the purpose of these workshops is to learn exactly what all of these things mean.

Other workshops

Biomedical Research

A workshop focused on introductory laboratory techniques and in silico biomedical research, held at our facility in San Jose, CA.  Topics covered include introductory bioinformatics, tissue culture (sterile technique and use of a laminar flow hood, cell counting/diluting, basic microscopy), isolation of DNA/RNA/protein, gene cloning and transfection/over-expression, SDS-PAGE gel electrophoresis/western blotting, flow cytometry (cell cycle analysis, measuring apoptosis), analysis of gene expression and mutation-detection using real-time polymerase chain reaction (PCR), and fluorescent microscopy,  All topics to be covered include a background on lab safety/ethics/record keeping, and there is a heavy emphasis on experimental design.

Medical and Translational Bioinformatics

(Christmas Break, Spring Break 2016/2017 – please inquire)
A short, introductory workshop on the field of bioinformatics in the era of personalized medicine, including an overview of the tools available for the analysis of large, publicly available data sets. Areas of emphasis include bioinformatics applied towards the discovery of the genetic basis of disease, the role of genetics in the response to currently-approved drugs (pharmacogenomics), and the development of next-generation therapeutics. More specifically, topics to be covered include genome navigation and analysis, DNA/RNA-sequencing, gene expression profiling, function prediction of novel genes/proteins, protein-protein interaction networks, miRNA target prediction, analysis of sequence variation, etc. For students interested in doing research or working on a project for a science fair, this is a great way to get started.